SKILLED PERFORMANCE AND MOTOR LEARNING

Fall 2016

This course is an introduction to the psychological principles and underlying neural mechanisms of skilled performance and motor control. In addition, experimental methods employed in the study of motor control will be demonstrated in the laboratory. Topics include the role of attention, information processing and feedback in controlling performance, as well as the contribution of the central nervous system in voluntary motor performance and motor learning.

Prerequisites:
HH KINE 2050 3.0 [or equivalent "Statistics" course]; and
HH PSYC 1010 6.0

Degree Credit Exclusions:
AS/SC PHED 3020.03

Course Instructors:
- Merv Mosher
 - 359 Stong College
 - ext. 66922
 - mmosher@yorku.ca
- Lauren Sergio
 - 2032 Sherman Health Science
 - ext. 33641
 - lsergio@yorku.ca

Office Hours:
by appointment

Computer Accounts:
All students require a Moodle account, and an “FAS” [File Access Service] account.

Course Web Sites:
moodle.yorku.ca
www.yorku.ca/mmosher

Laboratory Instructors:
(to be announced)

Lectures:
Section A - Mon. & Wed. 1:30, ACW - 109
Section B - Mon. & Wed. 2:30, ACW - 109

Laboratories:
Labs for Section A & B will be held in 125, 163, 125A and 162 CB. See the York University Lecture Schedule for the days and times for labs.

Labs commence the week of September 19, 2016
Required texts:

Course Readings: Posted on Moodle

Course Evaluation:

- Lab Assignments 15% Weekly assignments based on labs.
- Mid-term exam 1 20% Scheduled for Oct. 31, during lecture time.
- Mid-term exam 2 20% Scheduled for Nov. 28, during lecture time.
- Final exam - 45% - 100% During December exam period.

Students who do not write Mid-term 1 waive the right to receive “a specific percentage of graded feedback” prior to the drop date for the Fall term.

Students must complete all of the lab assignments to be eligible for letter grade adjustments at the end of the term.

The percentage allocated for any course work not attempted/completed will be added to the final exam.

** Exams cover material from the lectures, readings and labs. All exams are cumulative **

In the event a mid-term exam is missed the percentage allocated to the exam will be added to the final. There are no make-up exams in the course.

N.B. An appeal against a grade assigned to an item of course work must be made in writing to the course director within 7 days of the graded work being made available to the class. The result of an appeal may cause the grade to increase, decrease or remain the same.

Although numerical marks are assigned to each piece of work in this course there should be no assumption that a total number of marks translates directly to a letter grade. Letter grades will be determined by the descriptions in the York University Undergraduate Calendar.

Students who miss the final exam will only be allowed to write a deferred final exam if the student provides a completed Registrar’s Office Attending Physician’s Statement showing a physical incapability of writing the final exam, dated the day of the final exam.
Drop Date:

Last date to drop a course without receiving a grade: **NOV. 11, 2016.**

Lecture Capture:

Lectures will be digitally recorded and posted online. Please note the York University policy regarding this technology.

The York University Student Code of Conduct specifically prohibits theft of intellectual property, which includes recording a course director's lecture without his/her permission or taking lecture material provided on line, modifying it, and/or using it for your own personal use or gain. The material provided is only to be used for your personal study when you take the course for which it was created. Use in any other way will result, at the minimum, in sanctions in accordance with the York Code and, at the maximum, will be breaking federal, provincial or municipal laws and will be acted on accordingly.

Learning Expectations:

After completion of KINE 3020 3.0 [Skilled Performance and Motor Learning], students will be able to:

a) describe the basic components of the human nervous system.
b) compare and contrast different cellular components of the human nervous system.
c) describe key processes involved in the passage of information between neurons.
d) describe how the nervous system controls muscles and monitors body and limb positions.
e) describe how the brain utilizes visual information to control skilled movement.
f) describe how various structures of the brain control human movement.
g) identify different types of memory involved in learning.
h) define skilled performance.
i) describe the connotations associated with skilled behaviour.
j) compare and contrast the common motor skill classification systems.
k) describe methods of assessing the production and outcome of motor skills.
l) describe characteristics of learners as they progress through stages of learning.
m) construct a model of information processing used by skilled performers.
n) summarize the differences in processing abilities between expert and novice performers.

IMPORTANT COURSE INFORMATION FOR STUDENTS

All students are expected to familiarize themselves with the following information, available on the Senate Committee on Curriculum & Academic Standards webpage (see Rep orts, Initiatives, Documents)

- York’s Academic Honesty Policy and Procedures/Academic Integrity Website
- Ethics Review Process for research involving human participants
- Course requirement accommodation for students with disabilities, including physical, medical, systemic, learning and psychiatric disabilities
- Student Conduct Standards
- Religious Observance Accommodation
<table>
<thead>
<tr>
<th>Week Beginning</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Reading</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 12</td>
<td>Intro class (admin details) Mosher/Sergio</td>
<td>(Sergio starts) Introduction to Nervous System</td>
<td>See Moodle</td>
<td>Labs in this course start the week of September 19.</td>
</tr>
<tr>
<td>September 19</td>
<td>Information Transmission</td>
<td>Sensory – Motor Systems 1: Control of Muscle</td>
<td>See Moodle</td>
<td>Lab 1 RT / MT Brain Intro</td>
</tr>
<tr>
<td>September 26</td>
<td>Sensory – Motor Systems 2: Proprioception</td>
<td>Sensory – Motor Systems 3: Visuo-Motor Coordination</td>
<td>See Moodle</td>
<td>Lab 2 Fatal Vision</td>
</tr>
<tr>
<td>October 3</td>
<td>Sensory – Motor Systems 4: Cortical Control of Movement</td>
<td>Sensory – Motor Systems 4: Cortical Control of Movement</td>
<td>See Moodle</td>
<td>Lab 3 Central Processing</td>
</tr>
<tr>
<td>October 10</td>
<td>Thanksgiving [University closed No lecture]</td>
<td>Basal Ganglia</td>
<td>See Moodle</td>
<td>Lab 4 Mirror Tracing [No Monday lab]</td>
</tr>
<tr>
<td>October 17</td>
<td>Cerebellum</td>
<td>Motor Learning</td>
<td>See Moodle</td>
<td>Lab 5 Sensorimotor integration and mental imagery</td>
</tr>
<tr>
<td>October 24</td>
<td>Motor Learning & Summary</td>
<td>(Mosher starts) Definitions/ Info Processing model</td>
<td>See Moodle</td>
<td>Lab 5 only for Monday lab times</td>
</tr>
<tr>
<td>October 31</td>
<td>1st Midterm</td>
<td>Error measures Learning - Power Law</td>
<td>Readings 1 to 5 [Moodle]</td>
<td>Lab 6 Speed / Accuracy</td>
</tr>
<tr>
<td>November 7</td>
<td>Classifications / Selective Attention</td>
<td>Attention: Perception Stage</td>
<td>Readings 6-10 [Moodle]</td>
<td>Lab 7 Measures of Error</td>
</tr>
<tr>
<td>November 14</td>
<td>Perception Stage</td>
<td>Decision Stage</td>
<td>Readings 11-15 [Moodle]</td>
<td>Lab 8 Perception – Crossman’s CF</td>
</tr>
<tr>
<td>November 21</td>
<td>Decision Stage</td>
<td>Effector Stage</td>
<td>Readings 16-20 [Moodle]</td>
<td>Lab 9 Decision - Hick-Hyman</td>
</tr>
<tr>
<td>November 28</td>
<td>2nd Midterm</td>
<td>Motor Program</td>
<td>Readings 21-25 [Moodle]</td>
<td>Lab 10 Effector - Fitts Law</td>
</tr>
<tr>
<td>December 5</td>
<td>Motor Programs [last class]</td>
<td>Final Exam period begins</td>
<td>Review Readings</td>
<td>No labs</td>
</tr>
<tr>
<td>December</td>
<td>Exam period Dec. 7–22</td>
<td>Exam period Dec. 7–22</td>
<td>Exam period Dec. 7–22</td>
<td>Exam period Dec. 7–22</td>
</tr>
</tbody>
</table>